Code: 20EC3401

II B.Tech - II Semester – Regular / Supplementary Examinations MAY- 2024

ANALOG CIRCUITS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.			
					Marks			
	UNIT-I							
1	a)	Describe the general characteristics of	L2	CO1	9 M			
		negative feedback amplifier and derive the						
		expression for gain with negative feedback.						
	b)	The voltage gain of an amplifier without	L3	CO2	5 M			
		feedback is 60dB. It decreases to 40dB with						
		feedback. Calculate the feedback factor.						
OR								
2	Dra	w the circuit diagram of voltage shunt	L3	CO2	14 M			
	fee	dback amplifier and derive the expressions		CO4				
	for	voltage gain and feedback factor.						
UNIT-II								
3	a)	Illustrate the working of op-amp	L3	CO3	7 M			
		non-inverting amplifiers. Derive the						
		expression for its voltage gain?						

	1							
	b)	Design an inverting amplifier which has the	L3	CO3	7 M			
		closed loop voltage gain of -50. The input						
		voltage is 200 mV with a source resistance						
		of 500 Ohm. Determine the value of output						
		voltage.						
OR								
4		at is the role of slew rate in amplifier	L3	CO3	14 M			
	_	formance analysis and also derive an						
	•	ression for it. Design averaging amplifier						
	usii	ng inverting configuration of op-amp.						
	T	UNIT-III		, ,				
5	Ske	etch and explain simple diagram of Wein	L3	CO2	14 M			
	bric	lge oscillator using op-amp and derive its		CO4				
	frec	quency of oscillation.						
OR								
6	Dis	cuss Hartley oscillator and derive the	L2	CO2	14 M			
	equ	ation for oscillation.		CO4				
UNIT-IV								
7	Ske	tch and analyze the functional block diagram	L4	CO3	14 M			
	of a	a 555IC timer and explain each block. How						
	are	Astable-multivibrator circuit built using the						
	abo	ve?						
OR								
8	Wit	th neat circuit diagram and waveforms,	L4	CO3	14 M			
	exp	lain operation of Monostable multivibrator						
	usii	ng 555IC and derive the expression for pulse						
	wid	th.						

UNIT-V									
9	Illu	strate the operation of a 4-bit R-2R type	L4	CO1	14 M				
	DAC and derive the expression for the output			CO3					
	voltage.								
OR									
10	a)	Discuss the counter type A/D converter with	L2	CO1	7 M				
		the help of neat block diagram.		CO3					
	b)	Explain the dual slope A/D converter with	L2	CO1	7 M				
		the help of neat block diagram.		CO3					